Pairing Computation on Edwards Curves with High-Degree Twists

نویسندگان

  • Liangze Li
  • Hongfeng Wu
  • Fan Zhang
چکیده

In this paper, we propose an elaborate geometry approach to explain the group law on twisted Edwards curves which are seen as the intersection of quadric surfaces in place. Using the geometric interpretation of the group law we obtain the Miller function for Tate pairing computation on twisted Edwards curves. Then we present the explicit formulae for pairing computation on twisted Edwards curves. Our formulae for the doubling step are a littler faster than that proposed by Arène et.al.. Finally, to improve the efficiency of pairing computation we present twists of degree 4 and 6 on twisted Edwards curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faster Pairing Computation on Jacobi Quartic Curves with High-Degree Twists

In this paper, we propose an elaborate geometric approach to explain the group law on Jacobi quartic curves which are seen as the intersection of two quadratic surfaces in space. Using the geometry interpretation we construct the Miller function. Then we present explicit formulae for the addition and doubling steps in Miller’s algorithm to compute Tate pairing on Jacobi quartic curves. Both the...

متن کامل

Faster Pairing Computations on Curves with High-Degree Twists

Research on efficient pairing implementation has focussed on reducing the loop length and on using high-degree twists. Existence of twists of degree larger than 2 is a very restrictive criterion but luckily constructions for pairing-friendly elliptic curves with such twists exist. In fact, Freeman, Scott and Teske showed in their overview paper that often the best known methods of constructing ...

متن کامل

Pairing Computation on Elliptic Curves of Jacobi Quartic Form

This paper proposes explicit formulae for the addition step and doubling step in Miller’s algorithm to compute Tate pairing on Jacobi quartic curves. We present a geometric interpretation of the group law on Jacobi quartic curves, which leads to formulae for Miller’s algorithm. The doubling step formula is competitive with that for Weierstrass curves and Edwards curves. Moreover, by carefully c...

متن کامل

Faster Pairing Computation

This paper proposes new explicit formulas for the doubling and addition step in Miller’s algorithm to compute pairings. For Edwards curves the formulas come from a new way of seeing the arithmetic. We state the first geometric interpretation of the group law on Edwards curves by presenting the functions which arise in the addition and doubling. Computing the coefficients of the functions and th...

متن کامل

Efficient Pairings Computation on Jacobi Quartic Elliptic Curves

This paper proposes the computation of the Tate pairing, Ate pairing and its variations on the special Jacobi quartic elliptic curve Y 2 = dX +Z. We improve the doubling and addition steps in Miller’s algorithm to compute the Tate pairing. We use the birational equivalence between Jacobi quartic curves and Weierstrass curves, together with a specific point representation to obtain the best resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012